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Efficiency of generalized simulated annealing
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We have explored the evolution of the efficiency of generalized simulated anné@®B@y) through a
comparative study with classical simulated anneali@§A) and fast simulated annealif§SA). Our calcu-
lations on the Thomson model and nickel clusters show that the relative efficiency of GSA compared to CSA
and FSA increases with the number of variables of the objective function. Thus, relative to CSA and FSA, the
more complex the system, the more efficient is the GSA method.

PACS numbegps): 02.70—c, 36.40--c

Many problems in physics, mathematics, economics, T
chemistry, and biology involve the determination of the glo- g(Ax)o T (AT BTDR (3
bal minimum of a certain multidimensional functi¢fn—3]. [T+ (AX)7]

In the literature, many algorithms, such as steepest decent,h D is the di . fth iabl Th
conjugate gradient, simplex, Monte Carlo, etc., have beelyN€reD Is the dimension of the variable space. The tempera-

developed to locate the global minimum. Among these methture in FSA decreases with the inverse of the simulation
ods, simulated annealin@,5] is believed to be one of the time. The acceptance algorithm remains the Metropolis algo-

most powerful algorithms and it is widely used in various "thm shown in Eq(2). - . .

applications. In the simulated annealing algorithm, ¢oe Recently, the generalized statlsuc_al mechamcs of Tsallis

more artificial temperature) is introduced and gradually .[11] has .befen .prop.osed. In the Tsallls' formalism, a general-

reduced to simulate the thermal noise. According to the prolzed statistics is built from the generalized entropy

cess of cooling and the visiting distribution, the simulated

annealing method can be classified into three categories, 1—2 p{

classical simulated annealif@SA) [4], fast simulated an- s =k

nealing (FSA) [6], and the recently proposed generalized a

simulated annealingGSA) [7,8]. . . .
In classical simulated annealing, proposed by KirkpatrickVhere d is a real number and, tends to the information

et al. [4], the visiting distribution is a Gaussian functiéa ~ €NtrOPY

local search distribution

a1 (4)

s=—kX pilnp ()

(Ax)?
g(Ax)ocexp< T ) (1) wheng—1. Maximizing the Tsallis entropy with the con-

straints

whereAx is the trial jump distance of the variabteandT is

an artificial temperature in reduced units. The jump is ac- 2 pi=1, ©6)
cepted if it is downhill(in terms of the energy functionlf

the jump is uphill it might be accepted according to an ac-

ceptance probability assumed to be canonical-ensemble 2 pi'e; = const,
Boltzmann-Gibbs like. The Metropolis algorithf] is used
for the acceptance probability: whereg; is the energy spectrum, the generalized probability
distribution is found to be
o AE (11— e 1A
p=min 1,exp< T ” 2) i:[l (1-09)Be¢i] , o

Zq

Geman and Gemafil0] showed that, for the classical wherez, is the generalized partition function. This distribu-
case, a necessary and sufficient condition for having probton goes to the Gibbs-Boltzman distribution whegtends to
ability 1 of ending in the global minimum is that the tem- 1. The generalized statistics preserves the Legendre transfor-
perature decreases logarithmically with simulation time,mations between thermodynamic state functift®|, leav-
which is essentially impossible. ing the form invariant. For ang, the von Neumann equation

In 1987, Szu and Hartlel6] proposed the so-called fast [13] and the Ehrenfest theorefi4] can be used to write,
simulated annealing method, in which the Cauchy-Lorentzamong other things, a generalized Boltzmafntheorem
visiting distribution is introduced, i.e., a semilocal search[15], the Langevin and Fokker-Planck equatidi$], and
distribution the fluctuation-dissipation theoref7].
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CSA and FSA can be generalized according to the Tsallis statistics within a unified diéturghis is the so-called
generalized simulated annealing algorith8]. It uses the Tsallis-Stariolo form of the Cauchy-Lorentz visiting distribution
whose shape is controlled by the paramejgr

[Tq, (D] 2140

9, (AX(D) {1+(q,— D[ AX(1) /[ Tq (1)]2/3 %)y Ha, 1+ (O-12 ©
|
g, also controls the rate of cooling: tween it and the previous result obtained by the genetic al-
gorithm and steepest descéh®,25 is smaller than 107. In
20,-1_1 our many searches, fott=2—-132, we did not find any new
Tqu(t):Tqv(l)m’ (9 energy minimum lower than the previous res{ilts,25. To

have good statistics, we chose a large enough number of
initial configurations to ensure that for every method the glo-
where T, is the visiting temperature. Also, a generalized bal m|n|mugm can be found at least more tzan 200 t|mesg
Metropolls algorithm is used for the acceptance probability: \ye defineP as the absolute efficiency, namely, the prob-
_ . 11-q, ability of finding the global minimum per trial search. So
Pa, min{1[1-(1-0a) SAE] i (10 Pcsa: Pesa, and Pcga are the probabilities of finding a
B . e global minimum by using GSA, FSA, and CSA, respec-
where §=1/KTq, and T, is an artificial temperature that tively. The relative efficiency of GSA to FSA is defined as
controls the acceptance probability. It is worth noting thatp* *=PssalPrsa, and the relative efficiency of GSA to
wheng,=1 andg,=1, GSA recovers CSA; whed,=2  CSA is defined aP}.=Pgsa/Pcsa. Usually the number of
andq,=1, GSA recovers FSA. Whefi—0, GSA behaves |5ca1 minima increases exponentially with the number of
like the steepest descent algorithm. Wiigtr 2, the cooling  yariables[20]. The bigger the number of local minima, the

is faster than that of CSA and FSA. smaller isP. The probabilityP can be written as
GSA has been found to be superior to FSA and CSA in a

few examples. Xian@t al. [18] found that the fluctuation of

energy is greatly reduced and the convergence to the global P=ae AN (12

minimum is faster than in CSA and FSA in a model calcu-

lation. Leme<et al.[24] observed a similar trend in optimiz-

ing the structure of a silicon cluster. However, it remainswhereN is the number of variables of the objective function.

unknown how this superiority of GSA over CS#SA)  Although botha and 8 contribute to the absolute efficiency

changes with increasing number of variables of the objectivep, it is only g that determine® for large enougN. So what

function, i.e., with increasing complexity of the system. we are interested in is jus®, not a. B is defined as the
We have explored the relative efficiency of GSA com- efficiency factagra smaller efficiency factor indicates a more

pared to CSAFSA) through the study of the Thomson prob- efficient algorithm. According to Eq12), the relative effi-

lem and the structure of Ni clusters. The Thomson problemgijency for GSA over FSA and CSA can be expressed as

which is to find the lowest energy structure bf point  follows:

charges on a unit sphere, was presented by J. J. Thomson,
and is regarded as an ideal benchmark of optimization meth-

ods[19]. The energy function in the Thomson model is P;fzngeygf“‘, (13

E=2 3 -

1¢|| F|

() Pac: 7\9C6790N, (14

We have searched the global minimum of the energy func-

tion E using CSA, FSA, and GSA. In GSAj,=—5 was Where therelative efficiency factorg,;=Brsa— Bssa: Ygc
proposed by Tsallis and Stariof@], and forg, we still use  =Bcsa— Baesaare the differences of efficiency factors of the
the same value as in our previous testing of the Thomsofwo methodsh y¢= agsd @rsa@ndhgc= agsa/ acsa- If the
problem[18]. In order to accelerate the convergence, we letelative efficiencyPy; or Py is larger than 1, we can say
the acceptance temperature equal the visiting temperature d6SA is more efficient than FSA or CSA. In fact, the previous
vided by the number of time steps. For GSA, FSA, and CSAresults have shown that GSA is more efficient than FSA and
we start at the same initial temperature, and the same initiZlSA in the testing size rand#,8,24. The most important
structures(coordinates and end at the same low visiting quantity that contributes to the relative efficiency is the rela-
temperaturg0.01), after which a short refinement by conju- tive efficiency factoryys (vqo)- If v4r (v4c) is larger than
gate gradient minimization is performed. In the short refine-zero, GSA becomes more efficient as the number of variables
ment, the minimum is reached when the energy differencéncreases. So the key to determining the efficiency of GSA is
for 15 continuous steps is lower than 0 This minimum is ~ whether the relative efficiency factoygs (v4c) is larger
regarded as the global minimum if the energy difference bethan zero.
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FIG. 1. Change of the relative efficiency of GSA compared to g 2. Change of the relative efficiency of GSA compared to
CSA and FSA with the number of variablégouble the number of  cga and FSA with the number of variablébree times the number
particles in the Thomson model. The dashed lines, fitted to aof atomg in optimizing the structure of Ni cluster. The dashed
straight line, indicate that the relative efficiency of GSA vs FSA andjines; fitted to a straight line, indicate that the relative efficiency of
CSA increases approximately exponentially with the number ofgsa ys FSA and CSA increase approximately exponentially with
variablesN. the number of variablehl.

The results for the Thomson model show that the relative 20
efficiency factorygs (o) is larger than zero, i.e., relative
to CSA and FSA, the larger the number of variables, the
more efficient is GSA. Figure 1 shows the evolution of the
relative efficiency with increasing variable numbdr We 10 }
find that InP* ~N increases linearly wittN. Through fitting,
we obtain yy=0.448<10"? and y4.=0.549< 10 2. Also
from Fig. 1 we can see that Rt is always larger than 1. L
Hence, the advantage of GSA over FSA and CSA is locatec 20 '
in both the efficiency factoB and the prefactow. Since the
complexity of the system increases with the number of vari- l
ables of the objective function, the increasing relative effi- 10 in FSA
ciency shows that, relative to CSA and FSA, the more com-
plex the system, the more efficient is GSA. e

We have also explored the efficiency of GSA in optimiz- V] 4
ing the structures of Ni clusters. The interaction between Ni 20
atoms is described by the Sutton-Chen version of the FS = R
potential[21,22: i A = A = —n

L e =
1 = =3 [
v:eZ 52 = ity GSA

(15 10 s
J#i

1 CSA

n

a

12
—Cp;

[
I

where =

m 1 2
pi=2, (3 : (16) 0 0 0
j7i \Tij X

The relative efficiency of GSA to CSA and FSA in studying  FiG. 3. Two-dimensional visiting distribution at a low tempera-
Ni clusters is shown in Fig. 2. We linearly fitted BT to N.  tyre. Gaussian distribution for CS@ipper pané| Cauchy-Lorentz
The ygr and vy, obtained for Ni clusters arey,;  distribution for FSA(middle panel, and Tsallis-Stariolo form of
=2.54x10 2 and y4.=3.27x<10 2. Thus the results ob- Cauchy-Lorentz distribution for GSAower panel. GSA visits the
tained in searching the ground state structures of Ni clustenshase space homogeneously.
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show that the relative efficiency of GSA to CSASA) ex-  GSA can search the phase space homogenehsyowest
ponentially increases with the number of variables. Herepanel of Fig. 3[7,8,18,23, which leads to a large probabil-
agsa IS also larger tharwgsa (acsp), as in the Thomson ity of finding the global minimum.
problem. A nonlocal and homogeneous search is important in a

The largery for the Ni cluster than in the Thomson prob- complicated system. As the number of variablégse com-
lem suggests that the more complicated the system, the mofgexity) increases, the number of local minima increases very
efficient the GSA method. Optimizing the structure of the Nifast. The local search method is more likely to be trapped in
cluster is more difficult than finding the global minimum in gne of local minima. Since GSA has a nonlocal search and
Fhe Thomson model, since the_ energy function for Ni.clu.s?ter%aS the probability of long jumps even at a low temperature,
is more complicated. Comparing the results shown in Fig. % has 4 |arge probability of escaping from a local minimum.
and Fig. 2, we can see that both the valuePdf and the  This could be one of the reasons why the relative efficiency
exponential factory for Ni clusters are larger than for the p* of GSA to CSA (FSA) increases with the number of
Thomson model, which suggests that the superiority of GSA 5riables and the complexity of the system.
over CSA(FSA) is more significant in the complicated sys- | symmary, we have studied the evolution of the relative
tem. _ _ o efficiency of GSA compared to CSASA) with increasing

It is interesting to ask why GSA is more efficient cOm- ,ymper of variables. We find that the relative efficiencies of
pared with FSA and CSA. To answer this question, we havessa 1o CSA and FSA increases with increasing number of
calculated the visiting distribution in two-dimensional space, riables. We have also observed a larger relative efficiency
at a low temperature, which is shown in Fig. 3. The differentiacior in optimizing the structure of Ni clusters than in the
features of the distribution in the three methods can bernomson model. All these results suggest that, relative to
clearly observed. CSA employs a Gaussian distributioncga ang FSA, the more complicated the system, the more
which is a local distribution, so the majority of the search iSgtficient is the GSA method. The possible reason for GSA to

confined to a local region of phase spat#p panel of Fig.  nhaye a high probability of finding the global minimum is also
3). FSA uses the Cauchy-Lorentz distribution, which is agqqressed.

semilocal distribution, so FSA searches the phase space more

efficiently than CSA, but the searching is still not very ho- We acknowledge Professor D. S. Wang, Dr. M. Z. Li, and
mogeneous. Trapping at a local region can still occuDr. W. Fan for useful discussions. One of the authdfs.)
(middle panel of Fig. B However, GSA uses the Tsallis- is grateful to Professor D. J. Wales for his kind help. This
Stariolo form of the Cauchy-Lorentz distributiong,(  work is partially supported by NNSF of China, Panden and
=2.62); the nonlocality of its distribution gives GSA a high CAS Projects, and the special funds for major state Basic
probability of long transitions even at low temperature, soresearch projects.
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