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Efficiency of generalized simulated annealing
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~Received 16 August 1999!

We have explored the evolution of the efficiency of generalized simulated annealing~GSA! through a
comparative study with classical simulated annealing~CSA! and fast simulated annealing~FSA!. Our calcu-
lations on the Thomson model and nickel clusters show that the relative efficiency of GSA compared to CSA
and FSA increases with the number of variables of the objective function. Thus, relative to CSA and FSA, the
more complex the system, the more efficient is the GSA method.

PACS number~s!: 02.70.2c, 36.40.2c
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Many problems in physics, mathematics, econom
chemistry, and biology involve the determination of the g
bal minimum of a certain multidimensional function@1–3#.
In the literature, many algorithms, such as steepest dec
conjugate gradient, simplex, Monte Carlo, etc., have b
developed to locate the global minimum. Among these me
ods, simulated annealing@4,5# is believed to be one of the
most powerful algorithms and it is widely used in vario
applications. In the simulated annealing algorithm, one~or
more! artificial temperature~s! is introduced and gradually
reduced to simulate the thermal noise. According to the p
cess of cooling and the visiting distribution, the simulat
annealing method can be classified into three catego
classical simulated annealing~CSA! @4#, fast simulated an-
nealing ~FSA! @6#, and the recently proposed generaliz
simulated annealing~GSA! @7,8#.

In classical simulated annealing, proposed by Kirkpatr
et al. @4#, the visiting distribution is a Gaussian function~a
local search distribution!:

g~Dx!}expS 2
~Dx!2

T D , ~1!

whereDx is the trial jump distance of the variablex andT is
an artificial temperature in reduced units. The jump is
cepted if it is downhill~in terms of the energy function!. If
the jump is uphill it might be accepted according to an
ceptance probability assumed to be canonical-ensem
Boltzmann-Gibbs like. The Metropolis algorithm@9# is used
for the acceptance probability:

p5minF1,expS 2
DE

T D G . ~2!

Geman and Geman@10# showed that, for the classica
case, a necessary and sufficient condition for having pr
ability 1 of ending in the global minimum is that the tem
perature decreases logarithmically with simulation tim
which is essentially impossible.

In 1987, Szu and Hartley@6# proposed the so-called fas
simulated annealing method, in which the Cauchy-Lore
visiting distribution is introduced, i.e., a semilocal sear
distribution
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g~Dx!}
T

@T21~Dx!2# (D11)/2
, ~3!

whereD is the dimension of the variable space. The tempe
ture in FSA decreases with the inverse of the simulat
time. The acceptance algorithm remains the Metropolis al
rithm shown in Eq.~2!.

Recently, the generalized statistical mechanics of Tsa
@11# has been proposed. In the Tsallis formalism, a gene
ized statistics is built from the generalized entropy

sq5k
12( pi

q

q21
, ~4!

where q is a real number andsq tends to the information
entropy

s52k( pi ln pi ~5!

when q→1. Maximizing the Tsallis entropy with the con
straints

( pi51, ~6!

( pi
qe i5const,

wheree i is the energy spectrum, the generalized probabi
distribution is found to be

pi5
@12~12q!be i #

1/~12q!

zq
, ~7!

wherezq is the generalized partition function. This distribu
tion goes to the Gibbs-Boltzman distribution whenq tends to
1. The generalized statistics preserves the Legendre tran
mations between thermodynamic state functions@12#, leav-
ing the form invariant. For anyq, the von Neumann equatio
@13# and the Ehrenfest theorem@14# can be used to write
among other things, a generalized BoltzmannH theorem
@15#, the Langevin and Fokker-Planck equations@16#, and
the fluctuation-dissipation theorem@17#.
4473 ©2000 The American Physical Society
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CSA and FSA can be generalized according to the Tsallis statistics within a unified picture@7#. This is the so-called
generalized simulated annealing algorithm@7,8#. It uses the Tsallis-Stariolo form of the Cauchy-Lorentz visiting distribut
whose shape is controlled by the parameterqv ,

gqv
„Dx~ t !…}

@Tqv
~ t !#2D/(32qv)

$11~qv21!@Dx~ t !#2/@Tqv
~ t !#2/(32qv)%1/(qv21)1(D21)/2

. ~8!
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qv also controls the rate of cooling:

Tqv
~ t !5Tqv

~1!
2qv2121

~11t !qv2121
, ~9!

where Tqv
is the visiting temperature. Also, a generaliz

Metropolis algorithm is used for the acceptance probabil

pqa
5min$1,@12~12qa!bDE#1/12qa%, ~10!

where b51/KTqa
and Tqa

is an artificial temperature tha
controls the acceptance probability. It is worth noting th
when qv51 and qa51, GSA recovers CSA; whenqv52
andqa51, GSA recovers FSA. WhenT→0, GSA behaves
like the steepest descent algorithm. Whenqv.2, the cooling
is faster than that of CSA and FSA.

GSA has been found to be superior to FSA and CSA i
few examples. Xianget al. @18# found that the fluctuation o
energy is greatly reduced and the convergence to the gl
minimum is faster than in CSA and FSA in a model calc
lation. Lemeset al. @24# observed a similar trend in optimiz
ing the structure of a silicon cluster. However, it rema
unknown how this superiority of GSA over CSA~FSA!
changes with increasing number of variables of the objec
function, i.e., with increasing complexity of the system.

We have explored the relative efficiency of GSA com
pared to CSA~FSA! through the study of the Thomson pro
lem and the structure of Ni clusters. The Thomson proble
which is to find the lowest energy structure ofN point
charges on a unit sphere, was presented by J. J. Thom
and is regarded as an ideal benchmark of optimization m
ods @19#. The energy function in the Thomson model is

E5
1

2 (
j Þ i

1

urW i2rW j u
. ~11!

We have searched the global minimum of the energy fu
tion E using CSA, FSA, and GSA. In GSA,qa525 was
proposed by Tsallis and Stariolo@7#, and forqv we still use
the same value as in our previous testing of the Thom
problem@18#. In order to accelerate the convergence, we
the acceptance temperature equal the visiting temperatur
vided by the number of time steps. For GSA, FSA, and CS
we start at the same initial temperature, and the same in
structures~coordinates!, and end at the same low visitin
temperature~0.01!, after which a short refinement by conju
gate gradient minimization is performed. In the short refin
ment, the minimum is reached when the energy differe
for 15 continuous steps is lower than 1028. This minimum is
regarded as the global minimum if the energy difference
:
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tween it and the previous result obtained by the genetic
gorithm and steepest descent@19,25# is smaller than 1027. In
our many searches, forN52 – 132, we did not find any new
energy minimum lower than the previous results@19,25#. To
have good statistics, we chose a large enough numbe
initial configurations to ensure that for every method the g
bal minimum can be found at least more than 200 times

We defineP as the absolute efficiency, namely, the pro
ability of finding the global minimum per trial search. S
PGSA, PFSA, and PCSA are the probabilities of finding a
global minimum by using GSA, FSA, and CSA, respe
tively. The relative efficiency of GSA to FSA is defined a
Pg f* 5PGSA/PFSA, and the relative efficiency of GSA to
CSA is defined asPgc* 5PGSA/PCSA. Usually the number of
local minima increases exponentially with the number
variables@20#. The bigger the number of local minima, th
smaller isP. The probabilityP can be written as

P5ae2bN, ~12!

whereN is the number of variables of the objective functio
Although botha andb contribute to the absolute efficienc
P, it is only b that determinesP for large enoughN. So what
we are interested in is justb, not a. b is defined as the
efficiency factor; a smaller efficiency factor indicates a mo
efficient algorithm. According to Eq.~12!, the relative effi-
ciency for GSA over FSA and CSA can be expressed
follows:

Pg f* 5lg fe
gg fN, ~13!

Pgc* 5lgce
ggcN, ~14!

where therelative efficiency factorsgg f5bFSA2bGSA, ggc
5bCSA2bGSA are the differences of efficiency factors of th
two methods,lg f5aGSA/aFSA andlgc5aGSA/aCSA. If the
relative efficiencyPg f* or Pgc* is larger than 1, we can sa
GSA is more efficient than FSA or CSA. In fact, the previo
results have shown that GSA is more efficient than FSA a
CSA in the testing size range@7,8,24#. The most important
quantity that contributes to the relative efficiency is the re
tive efficiency factorgg f (ggc). If gg f (ggc) is larger than
zero, GSA becomes more efficient as the number of varia
increases. So the key to determining the efficiency of GSA
whether the relative efficiency factorgg f (ggc) is larger
than zero.
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The results for the Thomson model show that the rela
efficiency factorgg f (ggc) is larger than zero, i.e., relativ
to CSA and FSA, the larger the number of variables,
more efficient is GSA. Figure 1 shows the evolution of t
relative efficiency with increasing variable numberN. We
find that lnP*;N increases linearly withN. Through fitting,
we obtaingg f50.44831022 and ggc50.54931022. Also
from Fig. 1 we can see that lnP* is always larger than 1
Hence, the advantage of GSA over FSA and CSA is loca
in both the efficiency factorb and the prefactora. Since the
complexity of the system increases with the number of v
ables of the objective function, the increasing relative e
ciency shows that, relative to CSA and FSA, the more co
plex the system, the more efficient is GSA.

We have also explored the efficiency of GSA in optim
ing the structures of Ni clusters. The interaction between
atoms is described by the Sutton-Chen version of the
potential@21,22#:

V5e(
i

F1

2 (
j Þ i

S a

r i j
D n

2cr i
1/2G , ~15!

where

r i5(
j Þ i

S a

r i j
D m

. ~16!

The relative efficiency of GSA to CSA and FSA in studyin
Ni clusters is shown in Fig. 2. We linearly fitted lnP* to N.
The gg f and ggc obtained for Ni clusters aregg f
52.5431022 and ggc53.2731022. Thus the results ob
tained in searching the ground state structures of Ni clus

FIG. 1. Change of the relative efficiency of GSA compared
CSA and FSA with the number of variables~double the number of
particles! in the Thomson model. The dashed lines, fitted to
straight line, indicate that the relative efficiency of GSA vs FSA a
CSA increases approximately exponentially with the number
variablesN.
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FIG. 3. Two-dimensional visiting distribution at a low temper
ture. Gaussian distribution for CSA~upper panel!, Cauchy-Lorentz
distribution for FSA~middle panel!, and Tsallis-Stariolo form of
Cauchy-Lorentz distribution for GSA~lower panel!. GSA visits the
phase space homogeneously.

f

FIG. 2. Change of the relative efficiency of GSA compared
CSA and FSA with the number of variables~three times the numbe
of atoms! in optimizing the structure of Ni cluster. The dashe
lines, fitted to a straight line, indicate that the relative efficiency
GSA vs FSA and CSA increase approximately exponentially w
the number of variablesN.



er

-
o

N
in
er
.

e
S
s-

-
av
ce
n
b

on
is

a
m
o-
cu
-

h
s

-

a

ery
in

and
re,

m.
cy
f

ive

of
of

ncy
e
to

ore
to
o

nd

is
nd
sic

4476 PRE 62BRIEF REPORTS
show that the relative efficiency of GSA to CSA~FSA! ex-
ponentially increases with the number of variables. H
aGSA is also larger thanaFSA (aCSA), as in the Thomson
problem.

The largerg for the Ni cluster than in the Thomson prob
lem suggests that the more complicated the system, the m
efficient the GSA method. Optimizing the structure of the
cluster is more difficult than finding the global minimum
the Thomson model, since the energy function for Ni clust
is more complicated. Comparing the results shown in Fig
and Fig. 2, we can see that both the value ofP* and the
exponential factorg for Ni clusters are larger than for th
Thomson model, which suggests that the superiority of G
over CSA~FSA! is more significant in the complicated sy
tem.

It is interesting to ask why GSA is more efficient com
pared with FSA and CSA. To answer this question, we h
calculated the visiting distribution in two-dimensional spa
at a low temperature, which is shown in Fig. 3. The differe
features of the distribution in the three methods can
clearly observed. CSA employs a Gaussian distributi
which is a local distribution, so the majority of the search
confined to a local region of phase space~top panel of Fig.
3!. FSA uses the Cauchy-Lorentz distribution, which is
semilocal distribution, so FSA searches the phase space
efficiently than CSA, but the searching is still not very h
mogeneous. Trapping at a local region can still oc
~middle panel of Fig. 3!. However, GSA uses the Tsallis
Stariolo form of the Cauchy-Lorentz distribution (qv
52.62); the nonlocality of its distribution gives GSA a hig
probability of long transitions even at low temperature,
A
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GSA can search the phase space homogeneously~the lowest
panel of Fig. 3! @7,8,18,23#, which leads to a large probabil
ity of finding the global minimum.

A nonlocal and homogeneous search is important in
complicated system. As the number of variables~the com-
plexity! increases, the number of local minima increases v
fast. The local search method is more likely to be trapped
one of local minima. Since GSA has a nonlocal search
has the probability of long jumps even at a low temperatu
it has a large probability of escaping from a local minimu
This could be one of the reasons why the relative efficien
P* of GSA to CSA ~FSA! increases with the number o
variables and the complexity of the system.

In summary, we have studied the evolution of the relat
efficiency of GSA compared to CSA~FSA! with increasing
number of variables. We find that the relative efficiencies
GSA to CSA and FSA increases with increasing number
variables. We have also observed a larger relative efficie
factor in optimizing the structure of Ni clusters than in th
Thomson model. All these results suggest that, relative
CSA and FSA, the more complicated the system, the m
efficient is the GSA method. The possible reason for GSA
have a high probability of finding the global minimum is als
addressed.
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